Effect of temperature on electrical resonance in leopard frog saccular hair cells.
نویسندگان
چکیده
Leopard frog saccular hair cells exhibit an electrical resonance in response to a depolarizing stimulus that has been proposed to contribute to the tuning properties of the frog sacculus by acting as an electrical band-pass filter. With the whole cell patch-clamp technique, we have investigated the effect of temperature on electrical resonances in isolated saccular hair cells, and we have described the effects of temperature on the currents and channel kinetics underlying electrical resonance. A hair cell's onset resonant frequency in response to a constant depolarizing current pulse increases linearly with temperature at a rate of 11 Hz/1 degrees C, exhibiting a mean Q10 of 1.7 between 15 and 35 degrees C. However, offset resonant frequencies continue to double every 10 degrees C, exhibiting a mean Q10 of 2.1. If steady-state voltage during the stimulus is held constant, all oscillatory frequencies increase with a mean Q10 of 2.1. The average level of steady-state depolarization during a +150-pA depolarizing current pulse decreases with increasing temperature (-6 mV from 15 to 25 degrees C). This temperature-dependent reduction of the steady-state membrane potential causes a shift in the voltage-dependent channel kinetics to slower rates, thus reducing the apparent Q10 for onset resonant frequencies. The peak outward tail current and net steady-state outward current, which is the sum of a voltage-dependent inward calcium current (ICa) and an outward calcium-dependent potassium current (IK(Ca)), increase with temperature, exhibiting a mean Q10 of 1.7 between 15 and 25 degrees C. The activation rate (T1/2) of the outward current exhibits a mean Q10 of 2.3 between 15 and 25 degrees C, while the deactivation rate (taurel) exhibits a mean Q10 of 2.9 over the same temperature range. These results support previous models of the molecular determination of resonant frequency, which have proposed that a combination of IK(Ca) channel kinetics and the overall magnitude of the outward current are primarily responsible for determining the resonant frequency of an isolated hair cell. The robust temperature sensitivity of the hair cell receptor potential contrasts sharply with the temperature-insensitive tuning properties of in vivo saccular nerve fiber recordings. Possible explanations for this discrepancy are discussed.
منابع مشابه
Gap junctions between hair cells and supporting cells in the goldfish saccular macula. A freeze fracture study.
functional asymmetries of myelinated branches in the frog muscle spindle. A study of the permeability of the outer capsule of the frog muscle spindle to potassium ions using ion·sensitive microelectrodes. Introduction Gap junctions have been considered to be responsible for cell-cell communization and are found where electrical coupling or metabolic cooperation is present. 1,2) Many extensive g...
متن کاملEvidence for water-permeable channels in auditory hair cells in the leopard frog.
Auditory hair cells in the amphibian papilla (APHCs) of the leopard frog, Rana pipiens pipiens, have a significantly higher permeability to water than that observed in mammalian hair cells. The insensitivity of water permeability in frog hair cells to extracellular mercury suggests that an amphibian homologue of the water channel aquaporin-4 (AQP4) may mediate water transport in these cells. Us...
متن کاملSyntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations
Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...
متن کاملLocalization of calcium signals by a mobile calcium buffer in frog saccular hair cells.
A recent study (Roberts, 1993) of saccular hair cells from grass frogs (Rana pipiens) has suggested a mechanism by which the unusually high concentrations of calcium-binding proteins found in certain sensory receptors and neurons, particularly in the auditory system, can influence short-range intracellular calcium signaling. In frog saccular hair cells, the mechanism operates within arrays of c...
متن کاملSyntaxin 1 is expressed in the trout saccular hair cells: RT-PCR and immunocytochemical observations
Syntaxin is one of several proteins that may be involved in the docking of synaptic vesicles, synaptic vesicle recycling, and non-synaptic membrane trafficking. Presence of syntaxin has been reported in rat auditory and vestibular end organs. In the current study, we have examined the expression of message for syntaxin 1 in hair cells of the sacculus of the rainbow trout, Oncorhynchus mykiss, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 79 1 شماره
صفحات -
تاریخ انتشار 1998